dwww Home | Manual pages | Find package

SYSTEMD-DISSECT(1)              systemd-dissect              SYSTEMD-DISSECT(1)

NAME
       systemd-dissect, mount.ddi - Dissect Discoverable Disk Images (DDIs)

SYNOPSIS

       systemd-dissect [OPTIONS...] IMAGE

       systemd-dissect [OPTIONS...] [--mount] IMAGE PATH

       systemd-dissect [OPTIONS...] [--umount] PATH

       systemd-dissect [OPTIONS...] [--attach] IMAGE

       systemd-dissect [OPTIONS...] [--detach] PATH

       systemd-dissect [OPTIONS...] [--list] IMAGE

       systemd-dissect [OPTIONS...] [--mtree] IMAGE

       systemd-dissect [OPTIONS...] [--with] IMAGE [COMMAND...]

       systemd-dissect [OPTIONS...] [--copy-from] IMAGE PATH [TARGET]

       systemd-dissect [OPTIONS...] [--copy-to] IMAGE [SOURCE] PATH

       systemd-dissect [OPTIONS...] [--make-archive] IMAGE [TARGET]

       systemd-dissect [OPTIONS...] [--discover]

       systemd-dissect [OPTIONS...] [--validate] IMAGE

DESCRIPTION
       systemd-dissect is a tool for introspecting and interacting with file
       system OS disk images, specifically Discoverable Disk Images (DDIs). It
       supports four different operations:

        1. Show general OS image information, including the image's os-
           release(5) data, machine ID, partition information and more.

        2. Mount an OS image to a local directory. In this mode it will dissect
           the OS image and mount the included partitions according to their
           designation onto a directory and possibly sub-directories.

        3. Unmount an OS image from a local directory. In this mode it will
           recursively unmount the mounted partitions and remove the underlying
           loop device, including all the partition sub-devices.

        4. Copy files and directories in and out of an OS image.

       The tool may operate on three types of OS images:

        1. OS disk images containing a GPT partition table envelope, with
           partitions marked according to the Discoverable Partitions
           Specification[1].

        2. OS disk images containing just a plain file-system without an
           enveloping partition table. (This file system is assumed to be the
           root file system of the OS.)

        3. OS disk images containing a GPT or MBR partition table, with a
           single partition only. (This partition is assumed to contain the
           root file system of the OS.)

       OS images may use any kind of Linux-supported file systems. In addition
       they may make use of LUKS disk encryption, and contain Verity integrity
       information. Note that qualifying OS images may be booted with systemd-
       nspawn(1)'s --image= switch, and be used as root file system for system
       service using the RootImage= unit file setting, see systemd.exec(5).

       Note that the partition table shown when invoked without command switch
       (as listed below) does not necessarily show all partitions included in
       the image, but just the partitions that are understood and considered
       part of an OS disk image. Specifically, partitions of unknown types are
       ignored, as well as duplicate partitions (i.e. more than one per
       partition type), as are root and /usr/ partitions of architectures not
       compatible with the local system. In other words: this tool will display
       what it operates with when mounting the image. To display the complete
       list of partitions use a tool such as fdisk(8).

       The systemd-dissect command may be invoked as mount.ddi in which case it
       implements the mount(8) "external helper" interface. This ensures disk
       images compatible with systemd-dissect can be mounted directly by mount
       and fstab(5). For details see below.

       In place of the image path a ".v/" versioned directory may be specified,
       see systemd.v(7) for details.

COMMANDS
       If neither of the command switches listed below are passed the specified
       disk image is opened and general information about the image and the
       contained partitions and their use is shown.

       --mount, -m
           Mount the specified OS image to the specified directory. This will
           dissect the image, determine the OS root file system — as well as
           possibly other partitions — and mount them to the specified
           directory. If the OS image contains multiple partitions marked with
           the Discoverable Partitions Specification[1] multiple nested mounts
           are established. This command expects two arguments: a path to an
           image file and a path to a directory where to mount the image.

           To unmount an OS image mounted like this use the --umount operation.

           When the OS image contains LUKS encrypted or Verity integrity
           protected file systems appropriate volumes are automatically set up
           and marked for automatic disassembly when the image is unmounted.

           The OS image may either be specified as path to an OS image stored
           in a regular file or may refer to block device node (in the latter
           case, the block device must be the "whole" device, i.e. not a
           partition device). (The other supported commands described here
           support this, too.)

           All mounted file systems are checked with the appropriate fsck(8)
           implementation in automatic fixing mode, unless explicitly turned
           off (--fsck=no) or read-only operation is requested (--read-only).

           Note that this functionality is also available in mount(8) via a
           command such as mount -t ddi myimage.raw targetdir/, as well as in
           fstab(5). For details, see below.

           Added in version 247.

       -M
           This is a shortcut for --mount --mkdir.

           Added in version 247.

       --umount, -u
           Unmount an OS image from the specified directory. This command
           expects one argument: a directory where an OS image was mounted.

           All mounted partitions will be recursively unmounted, and the
           underlying loop device will be removed, along with all its partition
           sub-devices.

           Added in version 252.

       -U
           This is a shortcut for --umount --rmdir.

           Added in version 252.

       --attach
           Attach the specified disk image to an automatically allocated
           loopback block device, and print the path to the loopback block
           device to standard output. This is similar to an invocation of
           losetup --find --show, but will validate the image as DDI before
           attaching, and derive the correct sector size to use automatically.
           Moreover, it ensures the per-partition block devices are created
           before returning. Takes a path to a disk image file.

           Added in version 254.

       --detach
           Detach the specified disk image from a loopback block device. This
           undoes the effect of --attach above. This expects either a path to a
           loopback block device as an argument, or the path to the backing
           image file. In the latter case, it will automatically determine the
           right device to detach.

           Added in version 254.

       --list, -l
           Prints the paths of all the files and directories in the specified
           OS image or directory to standard output.

           Added in version 253.

       --mtree
           Generates a BSD mtree(8) compatible file manifest of the specified
           disk image or directory. This is useful for comparing image contents
           in detail, including inode information and other metadata. While the
           generated manifest will contain detailed inode information, it
           currently excludes extended attributes, file system capabilities,
           MAC labels, chattr(1) file flags, btrfs(5) subvolume information,
           and various other file metadata. File content information is shown
           via a SHA256 digest. Additional fields might be added in future.
           Note that inode information such as link counts, inode numbers and
           timestamps is excluded from the output on purpose, as it typically
           complicates reproducibility.

           Added in version 253.

       --with
           Runs the specified command with the specified OS image mounted. This
           will mount the image to a temporary directory, switch the current
           working directory to it, and invoke the specified command line as
           child process. Once the process ends it will unmount the image
           again, and remove the temporary directory. If no command is
           specified a shell is invoked. The image is mounted writable, use
           --read-only to switch to read-only operation. The invoked process
           will have the $SYSTEMD_DISSECT_ROOT environment variable set,
           containing the absolute path name of the temporary mount point, i.e.
           the same directory that is set as the current working directory. It
           will also have the $SYSTEMD_DISSECT_DEVICE environment variable set,
           containing the absolute path name of the loop device the image was
           attached to.

           Added in version 253.

       --copy-from, -x
           Copies a file or directory from the specified OS image or directory
           into the specified location on the host file system. Expects three
           arguments: a path to an image file or directory, a source path
           (relative to the image's root directory) and a destination path
           (relative to the current working directory, or an absolute path,
           both outside of the image). If the destination path is omitted or
           specified as dash ("-"), the specified file is written to standard
           output. If the source path in the image file system refers to a
           regular file it is copied to the destination path. In this case,
           access mode, extended attributes and timestamps are copied as well,
           but file ownership is not. If the source path in the image refers to
           a directory, it is copied to the destination path, recursively with
           all containing files and directories. In this case, the file
           ownership is copied too.

           Added in version 247.

       --copy-to, -a
           Copies a file or directory from the specified location in the host
           file system into the specified OS image or directory. Expects three
           arguments: a path to an image file or directory, a source path
           (relative to the current working directory, or an absolute path,
           both outside of the image) and a destination path (relative to the
           image's root directory). If the source path is omitted or specified
           as dash ("-"), the data to write is read from standard input. If the
           source path in the host file system refers to a regular file, it is
           copied to the destination path. In this case, access mode, extended
           attributes and timestamps are copied as well, but file ownership is
           not. If the source path in the host file system refers to a
           directory it is copied to the destination path, recursively with all
           containing files and directories. In this case, the file ownership
           is copied too.

           As with --mount file system checks are implicitly run before the
           copy operation begins.

           Added in version 247.

       --make-archive
           Generates an archive file from the specified disk image. Expects two
           arguments: the path to the disk image and optionally the output
           archive file path. If the latter is omitted the archive is written
           to standard output. The archive file format is determined
           automatically from the specified output archive file name, e.g. any
           path suffixed with ".tar.xz" will result in an xz compressed UNIX
           tarball (if the path is omitted an uncompressed UNIX tarball is
           created). See libarchive(3) for a list of supported archive formats
           and compression schemes.

           Added in version 256.

       --discover
           Show a list of DDIs in well-known directories. This will show
           machine, portable service and system/configuration extension disk
           images in the usual directories /usr/lib/machines/,
           /usr/lib/portables/, /usr/lib/confexts/, /var/lib/machines/,
           /var/lib/portables/, /var/lib/extensions/ and so on.

           Added in version 253.

       --validate
           Validates the partition arrangement of a disk image (DDI), and
           ensures it matches the image policy specified via --image-policy=,
           if one is specified. This parses the partition table and probes the
           file systems in the image, but does not attempt to mount them (nor
           to set up disk encryption/authentication via LUKS/Verity). It does
           this taking the configured image dissection policy into account.
           Since this operation does not mount file systems, this command –
           unlike all other commands implemented by this tool – requires no
           privileges other than the ability to access the specified file.
           Prints "OK" and returns zero if the image appears to be in order and
           matches the specified image dissection policy. Otherwise, prints an
           error message and returns non-zero.

           Added in version 254.

       -h, --help
           Print a short help text and exit.

       --version
           Print a short version string and exit.

OPTIONS
       The following options are understood:

       --read-only, -r
           Operate in read-only mode. By default, --mount will establish
           writable mount points. If this option is specified they are
           established in read-only mode instead.

           Added in version 247.

       --fsck=no
           Turn off automatic file system checking. By default, when an image
           is accessed for writing (by --mount or --copy-to) the file systems
           contained in the OS image are automatically checked using the
           appropriate fsck(8) command, in automatic fixing mode. This behavior
           may be switched off using --fsck=no.

           Added in version 247.

       --growfs=no
           Turn off automatic growing of accessed file systems to their
           partition size, if marked for that in the GPT partition table. By
           default, when an image is accessed for writing (by --mount or
           --copy-to) the file systems contained in the OS image are
           automatically grown to their partition sizes, if bit 59 in the GPT
           partition flags is set for partition types that are defined by the
           Discoverable Partitions Specification[1]. This behavior may be
           switched off using --growfs=no. File systems are grown automatically
           on access if all of the following conditions are met:

            1. The file system is mounted writable

            2. The file system currently is smaller than the partition it is
               contained in (and thus can be grown)

            3. The image contains a GPT partition table

            4. The file system is stored on a partition defined by the
               Discoverable Partitions Specification

            5. Bit 59 of the GPT partition flags for this partition is set, as
               per specification

            6. The --growfs=no option is not passed.

           Added in version 249.

       --mkdir
           If combined with --mount the directory to mount the OS image to is
           created if it is missing. Note that the directory is not
           automatically removed when the disk image is unmounted again.

           Added in version 247.

       --rmdir
           If combined with --umount the specified directory where the OS image
           is mounted is removed after unmounting the OS image.

           Added in version 252.

       --discard=
           Takes one of "disabled", "loop", "all", "crypto". If "disabled" the
           image is accessed with empty block discarding turned off. If "loop"
           discarding is enabled if operating on a regular file. If "crypt"
           discarding is enabled even on encrypted file systems. If "all"
           discarding is unconditionally enabled.

           Added in version 247.

       --in-memory
           If specified an in-memory copy of the specified disk image is used.
           This may be used to operate with write-access on a (possibly
           read-only) image, without actually modifying the original file. This
           may also be used in order to operate on a disk image without keeping
           the originating file system busy, in order to allow it to be
           unmounted.

           Added in version 253.

       --root-hash=, --root-hash-sig=, --verity-data=
           Configure various aspects of Verity data integrity for the OS image.
           Option --root-hash= specifies a hex-encoded top-level Verity hash to
           use for setting up the Verity integrity protection. Option
           --root-hash-sig= specifies the path to a file containing a PKCS#7
           signature for the hash. This signature is passed to the kernel
           during activation, which will match it against signature keys
           available in the kernel keyring. Option --verity-data= specifies a
           path to a file with the Verity data to use for the OS image, in case
           it is stored in a detached file. It is recommended to embed the
           Verity data directly in the image, using the Verity mechanisms in
           the Discoverable Partitions Specification[1].

           Added in version 247.

       --loop-ref=
           Configures the "reference" string the kernel shall report as backing
           file for the loopback block device. While this is supposed to be a
           path or filename referencing the backing file, this is not enforced
           and the kernel accepts arbitrary free-form strings, chosen by the
           user. Accepts arbitrary strings up to a length of 63 characters.
           This sets the kernel's ".lo_file_name" field for the block device.
           Note this is distinct from the
           /sys/class/block/loopX/loop/backing_file attribute file that always
           reports a path referring to the actual backing file. The latter is
           subject to mount namespace translation, the former is not.

           This setting is particularly useful in combination with the --attach
           command, as it allows later referencing the allocated loop device
           via /dev/disk/by-loop-ref/...  symlinks. Example: first, set up the
           loopback device via systemd-dissect attach --loop-ref=quux foo.raw,
           and then reference it in a command via the specified filename:
           cfdisk /dev/disk/by-loop-ref/quux.

           Added in version 254.

       --mtree-hash=no
           If combined with --mtree, turns off inclusion of file hashes in the
           mtree output. This makes the --mtree faster when operating on large
           images.

           Added in version 254.

       --image-policy=policy
           Takes an image policy string as argument, as per systemd.image-
           policy(7). The policy is enforced when operating on the disk image
           specified via --image=, see above. If not specified, defaults to the
           "*" policy, i.e. all recognized file systems in the image are used.

       --no-pager
           Do not pipe output into a pager.

       --no-legend
           Do not print the legend, i.e. column headers and the footer with
           hints.

       --json=MODE
           Shows output formatted as JSON. Expects one of "short" (for the
           shortest possible output without any redundant whitespace or line
           breaks), "pretty" (for a pretty version of the same, with
           indentation and line breaks) or "off" (to turn off JSON output, the
           default).

EXIT STATUS
       On success, 0 is returned, a non-zero failure code otherwise. If the
       --with command is used the exit status of the invoked command is
       propagated.

INVOCATION AS /SBIN/MOUNT.DDI
       The systemd-dissect executable may be symlinked to /sbin/mount.ddi. If
       invoked through that it implements mount(8)'s "external helper"
       interface for the (pseudo) file system type "ddi". This means conformant
       disk images may be mounted directly via

           # mount -t ddi myimage.raw targetdir/

       in a fashion mostly equivalent to:

           # systemd-dissect --mount myimage.raw targetdir/

       Note that since a single DDI may contain multiple file systems it should
       later be unmounted with umount -R targetdir/, for recursive operation.

       This functionality is particularly useful to mount DDIs automatically at
       boot via simple /etc/fstab entries. For example:

           /path/to/myimage.raw /images/myimage/ ddi defaults 0 0

       When invoked this way the mount options "ro", "rw", "discard",
       "nodiscard" map to the corresponding options listed above (i.e.
       --read-only, --discard=all, --discard=disabled). Mount options are not
       generically passed on to the file systems inside the images.

EXAMPLES
       Example 1. Generate a tarball from an OS disk image (--with)

           # systemd-dissect --with foo.raw tar cz . >foo.tar.gz

       or alternatively just:

       Example 2. Generate a tarball from an OS disk image (--make-archive)

           # systemd-dissect --make-archive foo.raw foo.tar.gz

SEE ALSO
       systemd(1), systemd-nspawn(1), systemd.exec(5), systemd.v(7),
       Discoverable Partitions Specification[1], mount(8), umount(8), fdisk(8)

NOTES
        1. Discoverable Partitions Specification
           https://uapi-group.org/specifications/specs/discoverable_partitions_specification

systemd 257.9                                                SYSTEMD-DISSECT(1)

Generated by dwww version 1.16 on Tue Dec 16 04:22:44 CET 2025.